Out-of-Sample Embedding by Sparse Representation

نویسندگان

  • Bogdan Raducanu
  • Fadi Dornaika
چکیده

A critical aspect of non-linear dimensionality reduction techniques is represented by the construction of the adjacency graph. The difficulty resides in finding the optimal parameters, a process which, in general, is heuristically driven. Recently, sparse representation has been proposed as a non-parametric solution to overcome this problem. In this paper, we demonstrate that this approach not only serves for the graph construction, but also represents an efficient and accurate alternative for out-of-sample embedding. Considering for a case study the Laplacian Eigenmaps, we applied our method to the face recognition problem. Experimental results conducted on some challenging datasets confirmed the robustness of our approach and its superiority when compared to existing techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

Fusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation

Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

Embedding new observations via sparse-coding for non-linear manifold learning

Non-linear dimensionality reduction techniques are affected by two critical aspects: (i) the design of the adjacency graphs, and (ii) the embedding of new test data—the out-of-sample problem. For the first aspect, the proposed solutions, in general, were heuristically driven. For the second aspect, the difficulty resides in finding an accurate mapping that transfers unseen data samples into an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012